المعين - An Overview
المعين - An Overview
Blog Article
من نحن لوحة تحكم مجتمع ويكي هاو صفحة عشوائية التصنيفات
يعدّ رباعياً مماسياً بمعنى أنّ كل ضلع من أضلاعه هو مماس لدائرة واحدة.
تجعل الكوكيز ويكي هاو يعمل بشكل أفضل. باستمرارك في استخدام موقعنا، أنت توافق على سياسة الكوكيز الخاصة بنا.
يُكتب المحتوى على ويكي هاو بأسلوب الويكي أو الكتابة التشاركية؛ أي أن أغلبية المقالات ساهم في كتابتها أكثر من مؤلف، عن طريق التحرير والحذف والإضافة للنص الأصلي.
المعين له نفس صيغة حساب متوازي الأضلاع والمربع ، وتحصل على شكل رباعي بأبعاد متساوية.
هل كان المقال مفيداً؟ نعم لا لقد قمت بتقييم هذا المقال سابقاً
القانون الثاني: مساحة المعين = ارتفاع المعين × طول قاعدة المعين، بحيث أنّ ارتفاع المعين: هي طول المسافة العمودية بين أي ضلعين متقابلين.
يختلف المعين عن المربع أيضًا بأن زواياه غير قائمةٍ، بينما زوايا المربع جميعها متساوية وقائمة، لذا يصبح المعين مربعًا عندما تكون زواياه قائمة، وبعبارةٍ أخرى يمكننا القول بأن: "كل مربعٍ هو معين ولكن كل معينٍ ليس مربعًا".
إيد أرابيا هو الدليل التعليمى الأول بالشرق الأوسط والذى يمكن الطلاب وأولياء الأمور والمعلمين من المقارنة لأختيار أفضل المؤسسات التعليمية ارابيا
يمكن حساب مساحة المعين في حال معرفة طول قطري المعين وذلك باستخدام المعادلة الرياضية وهي:
ندعوك للانضمام إلى موقع الرياضيات العربية الإلكتروني حتى نتمكن من التحقق معا من ماهية المعين وكيف يمكن حسابه في الهندسة.
عند توصيل نقاط المنتصف لأنصاف أقطار المعين مع بعضها يمكننا الحصول على معين آخر داخل المعين الأصلي.
يحمل المعين جميع خواص متوازي more info الأضلاع، بالإضافة إلى هذه الخصائص:
القُطران متعامدان وينصّفان زواياه وهما محوَرَي التماثل للمعين، كما أنّ كل قطرٍ من أقطاره يقسم المعين إلى مثلثَين متطابقَين.
كلاهما أشكال رباعية؛ فالمربع هو شكل رباعي، والمعين هو أيضًا شكل رباعي الأضلاع.
Report this page